Skip to main content

Biography

Mario Antonio Martinez has earned the Artium Baccalaureus from Vassar College, the Master of Arts in Teaching from Bennington College, and the Doctor of Philosophy in Curriculum and Instruction from Texas Tech University, where he was a Helen DeVitt Jones Fellowship recipient.  His dissertation advisor was Trenia Walker, with Doug Simpson and Mary Fehr completing his comittee. 
In addition to his formal qualifications, he received specialized training in research from the Texas Tech University Health Sciences Center, El Paso (TTUHSCEP).  While at the TTUHSCEP he worked collaboratively under a National Institutes of Health (NIH) grant, and a Texas Workforce grant.  He has taught in public elementary schools in the United States for six years.  Dr. Martinez has worked at Houston Community College, the Harris County Department of Education, The Tecnologico de Monterrey, and the University of New Mexico.  He currently works for the University of Houston as an institutional research analyst.  He has written as author/co-author in the fields of elementary education, mental health education, and safety science education. His current research interests fall under k-5 educational research.

Comments

Popular posts from this blog

Digital Humanities Methods in Educational Research

Digital Humanities based education Research This is a backpost from 2017. During that year, I presented my latest work at the 2017  SERA conference in Division II (Instruction, Cognition, and Learning). The title of my paper was "A Return to the Pahl (1978) School Leavers Study: A Distanced Reading Analysis." There are several motivations behind this study, including Cheon et al. (2013) from my alma mater .   This paper accomplished two objectives. First, I engaged previous claims made about the United States' equivalent of high school graduates on the Isle of Sheppey, UK, in the late 1970s. Second, I used emerging digital methods to arrive at conclusions about relationships between unemployment, participants' feelings about their  (then) current selves, their possible selves, and their  educational accomplishm ents. I n the image to the left I show a Ward Hierarchical Cluster reflecting the stylometrics of 153

Persisting through reading technical CRAN documentation

 In my pursuit of self learning the R programming language, I have mostly mastered the art of reading through CRAN documentation of R libraries as they are published. I have gone through everything from mediocre to very well documented sheets and anything in between. I am sharing one example of a very good function that was well documented in the 'survey' library by Dr. Thomas Lumley that for some reason I could not process and make work with my data initially. No finger pointing or anything like that here. It was merely my brain not readily able to wrap around the idea that the function passed another function in its arguments.  fig1: the  svyby function in the 'survey' library by Thomas Lumley filled in with variables for my study Readers familiar with base R will be reminded of another function that works similarly called the aggregate  function, which is mirrored by the work of the svyby function, in that both call on data and both call on a function towards t

Bi-Term topic modeling in R

As large language models (LLMs) have become all the rage recently, we can look to small scale modeling again as a useful tool to researchers in the field with strictly defined research questions that limit the use of language parsing and modeling to the bi term topic modeling procedure. In this blog post I discuss the procedure for bi-term topic modeling (BTM) in the R programming language. One indication of when to use the procedure is when there is short text with a large "n" to be parsed. An example of this is using it on twitter applications, and related social media postings. To be sure, such applications of text are becoming harder to harvest from online, but secondary data sources can still yield insightful information, and there are other uses for the BTM outside of twitter that can bring insights into short text, such as from open ended questions in surveys.   Yan et al. (2013) have suggested that the procedure of BTM with its Gibbs sampling procedure handles sho